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Abstract—Fluted tubes which were designed by Gregorig considering the use of surface tension forces are

commonly used in evaporators and condensers for desalination purposes. In this study the surface profile

of a fluted tube, which cannot be described by any conventional coordinate system is obtained numerically

by using an intrinsic-coordinate system. Navier-Stokes equations are solved after some simplifications for

the condensate flowing over the sinusoidal fluted profile to find the volumetric flow rate. The results are
found to be in good agreement with the experimental findings.

1. INTRODUCTION

HicH HEAT transfer performance condensers are
required in the development of new energy sources.

Among the many new methods for increasing-

condensation heat transfer this paper deals with
the enhancement of the heat transfer coefficient
using modified heat transfer surfaces (e.g. fluted
tubes).

The fluted tube profile was first proposed by
Gregorig in 1954 [1]. The tube walls are given sinusoidal
shapes on the plane perpendicular to the tube axis
having several flutes around the circumference. A flute
is defined with two ‘crests’ and one ‘groove’ the speci-
fications of which are further defined with the radii of
curvature of the crests and the groove, the distance
between the two crests, the depth of the flute and angle
of the flute. In these tubes, the curvature difference of
the sinusoidal profile of the tube wall on the plane
perpendicular to the tube axis, develops pressure
differences in the condensate film due to surface ten-
sion forces. In vertical fluted tube condensers, the
condensate forming on the outer surface of the tube
drains from crests to the groove of a flute as a result
of surface tension forces, leaving bare areas over the
crests. The condensate flows in the grooves in the
direction of gravity. This film thinning over the crests
considerably reduces the resistance to heat transfer
and thus, increases the average condensing film
coefficient (Fig. 1) compared to smooth tubes {2-7].

Although there are many experimental studies on
fluted tubes as given above, there are only a few theor-
etical studies [8~11]. This is mainly due to the complex
nature of the surface shape of the sinusoidally
designed fluted tube where the analytical solution of
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Navier-Stokes equations is practically impossible for
the condensate.

In this study, the intrinsic coordinate system is util-
ized to find the surface profile of the condensate falling
down the outer surface of a fluted tube. A model is
adapted for the solution of the Navier-Stokes equa-
tion in order to find the volumetric flow rate of the
condensate.

2. DETERMINATION OF THE SURFACE
PROFILE OF A FLUTED TUBE

Yorkshire Imperial Metals Limited was the supplier
of the fluted tube tested. According to their infor-
mation, the tube walls were sinusoidally shaped.
Therefore, studies are directed to obtain a hydro-
dynamic model for sinusoidal fluted profiles. The close
study of the fluted tube with a Vernier microscope by
Ozgen [12] has shown that both the outer and the
inner surfaces do not fit a sinusoidal profile. However,
the centreline passing through the half-thickness of
the fluted wall fits a sinusoidal shape.

This centreline which cannot be described by any
conventional coordinate system, is obtained by using
an intrinsic coordinate system which is shown in Fig.
2. The centreline curvature, K, of a fluted surface is
given by Wang [13] as

K = A+ Bcos(4s) )

where A is the mean curvature, B the reciprocal of the
amplitude of the corrugation, 1 the frequency of the
corrugation and s the arc length in radians measured
from a fixed point on the curve. The Frenet—Serret
formulas give the coordinates (x, y) of this centreline

d¢ dx dy .
-a—;—K, ds—cosqi, ds—-smqb. 2)

Since the mean curvature is not zero (A # 0), all

1839



1840 H. GOk¢e and C. Ozcen

position vector of point X in intrinsic

coordinates
R, R at the tube wall
R, R at the condensate surface
s arc length
T tangent vector in Fig. 2

AV volumetric flow rate [mlmin~']
V., V., V, velocity vectors [m s~']

w quantity in equation (16)
x,y,z Cartesian coordinates
Y, quantity given in equation (21)

NOMENCLATURE

a radius of curvature of water from Ax tube wall thickness [mmy}

surface [mm] Az interval of tube length [m].
A constant in equation (1)
B reciprocal of the amplitude of Greek symbols

corrugation [mm~'] x flute .angle [d.e el
C,, C, constants in equation (33) B B/A in equation (3)
g gravitational acceleration, 9.80 m s~ v angle measx}red from tube centre [rad]
h film thickness [mm] Y2 angle at which surface and condensate
H maximum film thickness [mm] profiles are tangent to each other
L, length of thin film section [mm)] & Ry, /R,
N number of flutes ¢ /R, .
N unit vector in Fig. 2 K curvature
R, R, radius of curvature in Fig. 1 ) angle between 7- and X-axis
R

p density of water [kgm™?]
A frequency of corrugation
0,8, angles facing condensate film surface
[deg]
0, 72— [rad)
U viscosity [Pa s].
Superscript

dimensionless quantity.

Subscripts
avg average quantity.

HEAT FLOW

THIN FILM REGION

I FLOW
-0 \ RZ /_
W,
\\ \
. VAPOR
]
\ .
TUBE WALL CONDENSATE
\\ GROOVE
N
Fi1G. 1. Fluted tube—principle of operation.
lengths can be normalized by 1/4. The dimensionless d¢
quantities are a5 = [ Hhcos eh) ©)
=5 sosa 7=t soxa goya VM
=p §=s4, A=, XI=x4, J=y Py
Then and
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X
F1G. 2. The intrinsic coordinate system.
dz
o cos ¢ ©)
.
o sin ¢. 5)
Integration of equation (3) gives
P K
f d¢=J‘ {1+ Bcos (A5)]ds 6)
1] ]
_se b
p=5+ 7sin 5. ¢

Substituting equation (7) into equations (4) and (5)
yields

% = cos (5 + gsin (7{§)> ()

3—? = sin (5 + %sin (15)> ®

The primary interest is the centreline configuration of

a corrugated tube with N-fold symmetry. Letting the

total perimeter length be §*; from equation (3) it can

be intuitively concluded that
18" = 2zN. (10)

The quantities £ and j are periodic for a closed tube

in (0, §*), then equation (8) or (9) gives

§' = 2m.

(1)

Equations (10) and (11) can be combined to give

T=N. (12)

Equations (8) and (9) can be written as
%; = CO8 (5 + gsin (N§)> 13)
%%: = sin (5 + gsin (Ns")). (14)

Numerical integration of equations (13) and (14) is
carried out using second-order Euler integration and
the dimensionless arc length, §, is increased as the
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integration proceeds (Fig. 3). A plot of the centreline
configuration is given in Fig. 4. Table 1 lists the speci-
fications of the tested tube.

A value for §is chosen as §, on the centreline. This
dimensionless arc length corresponds to a specific
angle y, (Fig. 3). Knowing these values and the tube
wall thickness, the angle 6, where the condensate pro-
file is tangent to the outer tube wall surface can be
calculated. In these calculations an assumption is
made by taking the slope of the centreline at §, to be
equal to the slope of the tube surface at the same y,.
The error involved in this approximation is small if
the wall thickness is small. This is also discussed by
Wang [13]. When f-values are small (equations (13)
and (14)), the same approximation is also valid because
small f-values do not yield large slopes.

Since condensation takes place on the outer surface
of a fluted tube, it is necessary to relate the outer
surface to the centreline profile.

Referring to Fig. 3, the outer surface profile can be
calculated by adding the thickness w in the direction
of R at any angle y. Then the magnitude of the position
vector R, for the outer surface is

R,=R+w (15)

and w is given by

Ax/2

Angles y and ¢ can be defined in terms of x and y

—y=tan-' (2
90—y = tan <x)
Ay
— -1
¢ = tan ( A%x>

where ¢ indicates the local angle of inclination which
can be calculated numerically.

17

(18)

3. DETERMINATION OF CONDENSATE
SURFACE PROFILE

Somer and Ozgen [7] showed that the surface of the
condensate film over the grooves fits a circle of radius
‘a’ changing with the dimensions of the flute and the
condensate flow rate (Fig. 5). The circle of the con-
densate surface is tangent to the tube surface at an
angle 0, since the surface profile is not sinusoidal, a
straight line connects the curvature at the crests and
the grooves giving a constant value for 6,. However,
a sinusoidal profile yields an angle 6, changing with
unit normal vector N along the arc length, 5. Geo-
metrical identities yield

6:=¢. 19)

The radius of the circle for the condensate surface
results in
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Ax/2

FiG. 3. Geometrical diagram used for the calculation of the outer surface and condensate profile.

__ R,siny
" sinf,

(20)
Hence, the length, Y, and the maximum film thick-
ness, H, can be found as

Y, =acosf,+ R, cosy 20

H=Y,~a—R, (22)

y=0

Equation (22) enables one to calculate R, at y = 0 as

R, =R, + H. 23)
y=0 y=0
For any other y, R, can be calculated from
RI—a*+Y}
Ry=—"ro 24
g 2Y,cosy (24)

The condensate surface profile, R,, is calculated by
using the Wegstein convergence method. The value of
R, calculated in each step in the s-direction is taken
as an initial estimate for the next step. The results of
calculations are shown in Fig. 6.

4. DETERMINATION OF THE CONDENSATE
FLOW RATE

The condensate formed over the whole surface of a
fluted tube drains through the grooves in the down-
ward direction and the flow is laminar [12]. In order
to solve the condensate flow rate Navier-Stokes equa-
tions [14] in polar coordinates are used. The z-com-
ponent of the equations has the form

v, V. V,ov. _ ov.

a " T
__% 10( o,
__6z+u r or r()r +

and can be simplified with the assumptions given
below.

102, o,
r_z 902 + 922 + P4

(25)

(1) Flow in the r- and 8-directions inside the groove
are negligible; V, = V, = 0.

(2) The condensate film is very thin and the re-
sultant of all the forces acting on this film in the z-
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FI1G. 4. The plot of the centreline configuration of the sinu-
soidal fluted tube tested.

Table 1. Specifications of the fluted tube tested

Diameter [mm] 50.8
Number of flutes, N 50

Plain thickness, x [mm] 0.812
Outside perimeter, P, [m] 0.1972
Inside perimeter, 2, [m] 0.1922
Depth, d [mm] 1.08
Pitch, p [mm] 3.19
Length, L [m] 1.80
Radius of groove curvature, a [mm] 0.4
Radius of crest curvature, b [mm} 0.8
Flute angle, « [deg] 45
Total flute length, St [mm] 3.945

direction is zero. Considering that the pressure of the
vapour in the chamber is also uniform ; 8P/0z = 0.
(3) The physical properties are constant (i.e. small
variations in density, viscosity and surface tension due
to slight variations in temperature and pressure can
be neglected.
(4) The flow is steady.

Equation (25) then reduces to

V?.KE“ 19_ 6_V
PV =R S e\ ar

18%y, 8%,

+2 252 +a—22:| + pg.. (26)

Equation (26) can be further simplified by taking
advantage of the equation of continuity, which yields
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av,
5 = 0 27
and hence
oV,
Equation (26) becomes
Lol av.y, 13V, | pg.
0= [:5:(’ ar)“*“;f?aﬂ* -

The exact solution of equation (29) for the given sys-
tem is not possible and an approximate solution as
described below is used.

If the flow area of the condensate in the groove area
is divided into small sections in the §-direction, then
each Af interval can be considered as a thin film falling
down a cylindrical surface having a constant film
thickness over that interval. Note that v is equivalent
to # in the conventional representation of polar coor-
dinates (Fig. 3). Then the film thickness over the inter-
val Ay is the arithmetic average of the film thickness
at the start and at the end of the division. For this
small Ay interval, equation (29) reduces to

1d/ dv, 09,
The problem can now be solved with the following
boundary conditions :

(30

dav,
(i) atr=RgR, , Fral 0 3
(i) atr =R, _, V,=0 (32)
where R, is defined by
Rhnvl = Rw“g +havg

where #,,, is the average film thickness over the inter-
val, Ay, and Rw_w is the average distance of the tube
surface from the tube centre. Equation (30) can be
integrated to give
V,= -2 ricimrtc, (33)
4u
Application of the boundary conditions, equations
(31) and (32), results in

Ci =5 (R,

=PIp2 _
C2 = 4[1Rw C; In Rwavg.

"avg

Equation (33) can be written as

PY: s 1Y (R, Y, 7
= R — .
Vz 4# e [} (wavg) * 2 (R“’ug to wag

(34
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surface

Fi1G. 5. Condensate profile over a flute.
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Fi16. 6. The plot of the external tube surface and condensate
profile.

Defining

R LV,
— = (35)

Wavg

equation (34) takes the form

_ P9

(o o,
v, r” w“s[l ( me) +2°n RW,‘,S]‘ (36)

RZ

For the interval Ay, the volumetric flow rate of the
condensate film is defined by

s £ Rl’nvg
AV=j j V.rdrdy.
yz Rw!vg

After changing the integration variables equation (37)
takes the form

(37

vy
AV = Rf,ml: £ V,EdEdy (38)

where

(39

Substitution of equation (36) into equation (38) and
integrating over the interval Ay gives

AV = AyR2 Pg:

#ra—fuzfs?lné)wé. “0)
H

Integrating once more and rearranging yields

« P9

AV = AwaM 160

(4e*—3e*+4de*lng—1). (41)

The overall volumetric flow rate is the summation of
the individual A¥s for the given angle y. Since y is a
function of the arc length, s, the integration limit can
be defined by this variable.
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DATA INPUT
INITIATION

CALCULATE
QUTER SURFACE PROFILE
Rw UP 10 ¥z
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Yes
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FiG. 7. Algorithm to calculate the condensate film flow rate
for a sinusoidal flute profile.

The algorithm of the explained model is given in
Fig. 7.

The condensate surface profile, R,, is calculated by
using the Wegstein convergence method. The value of
R, calculated in each step in the s-direction is taken
as an initial estimate for the next step.

The procedure explained above is repeated for
different y, values and a plot indicating the relation
between condensate rate and maximum film thickness
is prepared. Figure 8 shows how the hydrodynamic
model fits the experimental data points obtained by
Ozgen [12]. It can be seen that the results obtained by
our hydrodynamic model are in very good agreement
with the experimental results.

5. CONCLUSION

The model used can be applied to other flute geome-
tries and further can be used for heat transfer studies.
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UN MODELE HYDRODYNAMIQUE DEVELOPPE POUR LE CONDENSAT
QUI S’ECOULE SUR UN TUBE CANNELE SINUSOIDALEMENT

Résumé—Les tubes cannelés congus par Gregorig en considération de la tension interfaciale sont com-

munément utilisés dans les évaporateurs et les condenseurs pour désalement. Dans cette étude, le profil de

surface du tube qui ne peut pas étre décrit par des systémes de coordonnées conventionnels, est obtenu

numeériquement en utilisant un systéme intrinséque. Les équations de Navier-Stokes sont résolues aprés

simplification, pour ’écoulement de condensat sur un profil sinusoidal, afin de calculer le débit. Les résultats
sont trouvés étre en bon accord avec les données expérimentales.

EIN HYDRODYNAMISCHES MODELL DER KONDENSATSTROMUNG AN EINEM
SINUSFORMIG PROFILIERTEN ROHR

Zusammenfassung—Profilierte Rohre, wie sie von Gregorig unter Ausnutzung der Oberflichenspannung

vorgeschlagen wurden, finden Anwendung in Verdampfern und Kondensatoren bei der Wasserentsalzung.

In der vorliegenden Untersuchung wurde das Oberfldchenprofil eines Rohres, welches mit keinem her-

kémmlichen Koordinatensystem beschrieben werden kann, numerisch in einem speziellen Koor-

dinatensystem ermittelt. Die Navier-Stokes-Gleichungen werden nach einigen Vereinfachungen fiir die

Kondensatstromung an einem sinusférmigen Profil geldst; der Volumenstrom wird ermittelt. Die Ergebnisse
stimmen gut mit experimentellen Befunden tiberein.

T’MOPOAUHAMUYECKAS MOJEJIb TEYEHUA KOHAEHCATA B CUHYCOUJATBHON
TPYBE C TrO®PUPOBAHHLBIMHW CTEHKAMH

Annotaumms-—Tpy6sl ¢ rodppHpOBaHHBIMA CTEHKAMH, pa3paboTanHbie ['PErOpHIoM ¢ y4€TOM CHJ1 HATA-

XEeHHs, OOBIMHO HCNOJIB3YIOTCS B MCTIAPHTENAX H KOHOEHCATOpaX RJIA OompecHeHHs BoAbl. B HacTosmem

HCCEIOBAHUM C IIOMOILUBIO CHCTEMB! COGCTBEHHBIX KOOPAHHAT PACCYMTAH MPOQUIb MIOBEPXHOCTH rog-

pPHPOBaHHOM TPYOBI, KOTOPBIH HENb3s OMHCAThL C MOMOLIBIO OObIYHON cucTeMHbl koopauHaT. C y4eToM

HEKOTOPBIX YNpoOIlleHH# pemenpl ypaBHeHHs Hasbe—CTOKca U MOTOKA KOHAEHCATa B TPyOe CHHYCOH-

OATLHOTO NMPO(HIIS, 9TO MO3BOJMIO PACCYMTATh OOBLEMHYIO CKOPOCTH MOTOKA. IlosydyeHHBIE pe3ysb-
TAThl XOPOLIO COBMNANAIOT C IKCIEPHMEHTAILHBIMH N2HHBIMH.



